Abstract
With the rapid development of industry and technology, high-efficiency extraction of uranium from seawater is a research hotspot from the aspect of nuclear energy development. Herein, a new amidoximated metal-organic framework (UiO-66-DAMN-AO) constructed through a novel organic ligand of 2-diaminomaleonitrile-terephthalic acid (BDC-DAMN) is designed via one-step post-synthetic methods (PSM), which possess the merit of abundant multiaffinity sites, large specific surface area, and unique porous structure for efficient uranium extraction. Adopting one-step PSM can alleviate the destruction of structural stability and the reduction of the conversion rate of amidoxime groups. Meanwhile, introducing the BDC-DAMN ligand with abundant multiaffinity sites endow UiO-66-DAMN-AO with excellent adsorption ability (Qm=426.3mgg-1) and selectivity. Interestingly, the UiO-66-DAMN-AO has both micropores and mesopores, which may be attributed to the partial etching of UiO-66-DAMN-AO during the amidoximation. The presence of mesopores improves the mass transfer rate of UiO-66-DAMN-AO and provides more exposed active sites, favoring the adsorption of uranium on UiO-66-DAMN-AO. Thus, this study provides a feasible strategy for modifying metal-organic framework (MOFs) with plentiful amidoxime groups and the promising prospect for MOF-based materials to adsorb uranium from ocean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.