Abstract

Since their discovery, carbon nanotubes (CNTs) have been considered to be promising candidates for polymer-based solar cells, but their functional incorporation and utilization in such devices have been limited due to processing bottlenecks. Here, we demonstrate the realization of controlled placement of a single-walled CNT (SWNT) monolayer network at four different positions in polymer-fullerene bulk-heterojunction (BHJ) solar cells. SWNTs were deposited by dip-coating from a hydrophilic suspension, and a very brief, largely nondestructive argon plasma treatment of the active layer was utilized for incorporation of a SWNT layer within or above it. We demonstrate that SWNTs on the hole-collection side of the active layer lead to an increase in power conversion efficiency (PCE) of the photovoltaic devices from 4 to 4.9% (under AM 1.5 G, 1.3 suns illumination). This is the highest reported PCE for polymer-based solar cells incorporating CNTs, upon consideration of expected scaling of device parameters for 1 sun illumination. We also observe that SWNTs deposited on the top of the active layer lead to major electro-optical changes in the device functionality, including an increased fluorescence lifetime of poly-3-hexylthiophene (P3HT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.