Abstract

To reduce the computational burden of the generalized FLANN (GFLANN) filter for nonlinear active noise control (NANC), a hierarchical partial update GFLANN (HPU-GFLANN) filter is presented in this paper. Based on the principle of divide and conquer, the proposed HPU-GFLANN divides the complex GFLANN filter (i.e., long memory length and large cross-terms selection parameter) into simple small-scale GFLANN modules and then interconnected in a pipelined form. Since those modules are simultaneously performed in a parallelism fashion, there is a significant improvement in computational efficiency. Besides, a hierarchical learning strategy is used to avoid the coupling effect between the nonlinear and linear part of the pipelined architecture. Data-dependent hierarchical M-Max filtered-error LMS algorithm is derived to selectively update coefficients of the HPU-GFLANN filter, which can further reduce the computational complexity. Moreover, the convergence analysis of the NANC system indicates that the proposed algorithm is stable. Computer simulation results verify that the proposed adaptive HPU-GFLANN filter is more effective in nonlinear ANC systems than the FLANN and GFLANN filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call