Abstract

Massively parallel divide-and-conquer density functional tight-binding (DC-DFTB) molecular dynamics and metadynamics simulations are efficient approaches for describing various chemical reactions and dynamic processes of large complex systems via quantum mechanics. In this study, DC-DFTB simulations were combined with multi-replica techniques. Specifically, multiple walkers metadynamics, replica exchange molecular dynamics, and parallel tempering metadynamics methods were implemented hierarchically into the in-house Dcdftbmd program. Test simulations in an aqueous phase of the internal rotation of formamide and conformational changes of dialanine showed that the newly developed extensions increase the sampling efficiency and the exploration capabilities in DC-DFTB configuration space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call