Abstract

Hierarchical nanoflowers (NFs) of zinc oxide (ZnO) have been synthesized in the hexagonal wurtzite structure by a facile hydrothermal method. Polyaniline (PANI) has been prepared by the chemical oxidative polymerization method and incorporated with ZnO NFs by the chemisorption method. The potential of the synthesized nanostructures has been demonstrated for efficient photocatalytic degradation of methylene blue (MB) and photoelectrochemical water splitting. The PANI/ZnO nanocomposite has exhibited the enhanced photocatalytic activity which is ∼9 fold higher in comparison to pristine ZnO NFs and enhanced photocurrent density which is ∼16 fold higher than the ZnO photoanode. Importantly, ∼4 fold increment in the incident photon-to-current conversion efficiency (IPCE) is exhibited by PANI/ZnO, than that of ZnO photoanode. The remarkably enhanced photocatalytic and photoelectrochemical performance of PANI/ZnO nanocomposite is attributed to the availability of more interfacial sites facilitated by the hierarchical ZnO NFs, improved overall photoresponse due to its photosensitization with PANI and the resulting type-II heterojunction between them, which helps in the efficient separation of photogenerated charge carriers at the interface. A plausible reaction mechanism for the substantially improved performance of nanostructured PANI/ZnO towards MB degradation and water splitting has also been elucidated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call