Abstract

Machining process control technologies are currently not well integrated into machine tool controllers and, thus, servomechanism dynamics are often ignored when designing and implementing process controllers. In this paper, a hierarchical controller is developed that simultaneously regulates the servomechanism positions and cutting forces in a lathing operation. The force process and servomechanism system are separated into high and low levels, respectively, in the hierarchy. The high level goal is to maintain a constant cutting force to maximize productivity while not violating a spindle power constraint. This goal is systematically propagated to the lower level and combined with the low level goal to track the reference position. Since there are only control signals at the lower level, in this case the motor voltages, a single controller is designed at the bottom level that will meet both the high level and low level goals. Simulations are conducted to validate the developed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.