Abstract

Novel three-dimensional (3D) NiMoO4 nanowire arrays (NWAs) grown directly onto the surface of macroporous graphene foams (GF) with robust adhesion were synthesized via a facile chemical vapor deposition (CVD) and subsequent hydrothermal route. The as-prepared NiMoO4 nanowires are composed of ultra-small nanoparticles (∼5 nm) with a diameter of 70-150 nm and are several micrometers in length. Such as-grown NiMoO4 NWA/3DGF composites are then evaluated as monolithic electrodes for lithium-ion batteries (LIBs) without the need of binders or metal-based current collectors. Benefitting from the unique three-dimensional arrayed architecture and characteristics with a high specific surface area and more active sites which facilitate fast electron and ionic transport within the electrode, the NiMoO4 NWA/GF composites deliver a high reversible specific capacity of 1088.02 mA h g(-1) at a current density of 200 mA g(-1) and 867.86 mA h g(-1) after 150 cycles (79.77% retention of the second cycle), and excellent rate capability. With the advantages of excellent electrochemical performance and a facile synthesis method, the NiMoO4 nanowire arrays supported on 3DGF exhibit great potential as anode materials for LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.