Abstract

In this work, NiCo2O4@NiCo2S4 nanocomposite with a hierarchical structure is prepared by a multistep process. First, NiCo2O4 nanowires array on Ni foam is prepared by a hydrothermal and a subsequent calcination process. Then, the NiCo2O4 nanowires array is converted to NiCo2O4@NiCo2S4 nanocomposite through a vapor-phase hydrothermal process. The NiCo2O4@NiCo2S4/Ni foam electrode exhibits a specific capacitance of 1872 F g–1 at 1 A g–1, a capacitance retention of 70.5% at 10 A g–1, and a retention ratio of 65% after 4000 charge–discharge cycles. The capacitance of NiCo2O4@NiCo2S4 nanocomposite is much higher than that of the NiCo2O4 nanowires array. The excellent electrochemical capacitive performances of the NiCo2O4@NiCo2S4 nanocomposite can be attributed to the hierarchical nanostructure, which can provide large surface areas and short diffusion pathways for electrons and ions. By using the NiCo2O4@NiCo2S4/Ni foam as the positive electrode and activated carbon/Ni foam as the negative electrode, a hybrid supercapacitor device is fabricated. The device achieves an energy density of 35.6 W h kg–1 and a power density of 1.5 kW kg–1 at 2 A g–1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.