Abstract
The performances of pseudocapacitors usually depend heavily on their hierarchical architectures and composition. Herein, we report a three-dimensional hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam (NiAl-LDH/MWCNT/NF) electrode prepared by a facile three-step fabrication method: in situ hydrothermal growth of NiAl-LDH film on a Ni foam, followed by direct chemical vapor deposition growth of dense MWCNTs onto the NiAl-LDH film, and finally the growth of NiAl-LDH onto the surface of the MWCNTs via an in situ hydrothermal process in the presence of surfactant sodium dodecyl sulfate. The MWCNT surface was fully covered by NiAl-LDH hexagonal platelets, and this hierarchical architecture led to a much enhanced capacitance. The NiAl-LDH/MWCNT/NF electrode has an areal loading mass of 5.8 mg of LDH per cm(2) of MWCNT/NF surface. It also possesses exceptional areal capacitance (7.5 F cm(-2)), specific capacitance (1293 F g(-1)), and cycling stability (83% of its initial value was preserved after 1000 charge-discharge cycles). The NiAl-LDH/MWCNT/NF material is thus a highly promising electrode with potential applications in electrochemical energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.