Abstract
Hybrid neuro-fuzzy systems have been in evidence during the past few years, due to its attractive combination of the learning capacity of artificial neural networks with the interpretability of the fuzzy systems. This article proposes a new hybrid neuro-fuzzy model, named hierarchical neuro-fuzzy quadtree (HNFQ), which is based on a recursive partitioning method of the input space named quadtree. The article describes the architecture of this new model, presenting its basic cell and its learning algorithm. The HNFQ system is evaluated in three well known benchmark applications: the sinc( x, y) function approximation, the Mackey Glass chaotic series forecast and the two spirals problem. When compared to other neuro-fuzzy systems, the HNFQ exhibits competing results, with two major advantages it automatically creates its own structure and it is not limited to few input variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.