Abstract

Freshwater scarcity is a critical challenge threatening human survival especially due to poverty and arid and off-grid regions. Sorption-based atmospheric water harvesting (AWH) has emerged as a promising strategy for clean water production. However, most of the high-capacity sorbents are limited by the poor sorption/desorption kinetics and uncontrollable liquid leakage problem. Inspired by the plant transpiration process, we develop an environmentally friendly LiCl@pollen cell-polypyrrole (LiCl@PC-PPy) composite sorbent by confining the LiCl hygroscopic agent in the cages of the PC-PPy. The composite sorbent exhibits much improved sorption/desorption kinetics owing to the hydrophilicity of the hierarchical porous structure of the pollen cells, which provides abundant water sorption active sites and diffusion pathways and forms a concave meniscus on cell skeletons to maximize the thermal utilization efficiency. Moreover, the big cavities of the PC-PPy cages can serve as a water reservoir to reduce liquid leakage. As a result, the sorbent can capture atmospheric water to 85% of its own weight under 60% relative humidity (RH) within 2 h and rapidly release the water within 1 h under weak light irradiation of 0.8 sun. As a proof-of-concept demonstration, the fabricated AWH device can absorb 1.55 gwater/gsorbent at night and collect 1.53 gwater/gsorbent of water in 1-day outdoor operation, and the collected water can meet the drinking water standards defined by the World Health Organization (WHO) and Environmental Protection Agency (EPA).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call