Abstract

Transition metal borides (TMBs) are a class of important but less well-explored electrocatalytic materials for water splitting. The lack of an advanced methodology to synthesize complex nanostructured TMBs with tunable surface properties is a major obstacle to the exploration of the full potential of TMBs for electrocatalytic applications. Here, we report the facile fabrication of a cobalt foam (CF)-supported hierarchical nanostructured Co-Mo-B/CoMoO4-x composite using a hydrothermal method, followed by annealing and NaBH4 reduction treatments. Our study found that NaBH4 reduction of CoMoO4 resulted in the concurrent formation of amorphous Co-Mo-B and an O-vacancy-rich CoMoO4-x substrate, which cooperatively catalyzed the hydrogen evolution reaction (HER) in an alkaline electrolyte. The hierarchical nanoporous structure derived from the dehydration and partial reduction reactions of the CoMoO4·nH2O precursor could offer ample accessible active sites, as well as interconnected channels for rapid mass transfer. In addition, the in situ growth of electrically conductive Co-Mo-B nanoparticles on the defective structured CoMoO4-x substrate imparted the electrocatalyst with good electrical conductivity. As a result, the Co-Mo-B/CoMoO4-x/CF catalyst showed impressively high activity and outstanding stability for the alkaline HER, outperforming most reported TMB electrocatalysts. For instance, it required an overpotential of 55 mV to afford 10 mA·cm-2 and showed a fluctuation of only ±8 mV in a 100 h constant-current test at 100 mA·cm-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.