Abstract

Electrochemical reduction reaction of nitrate (NITRR) provides a sustainable route toward the green synthesis of ammonia. Nevertheless, it remains challenging to achieve high-performance electrocatalysts for NITRR especially at low overpotentials. In this work, hierarchical nanospheres consisting of polycrystalline Iridium&copper (Ir&Cu) and amorphous Cu2 O (Cux Iry Oz NS) have been fabricated. The optimal species Cu0.86 Ir0.14 Oz delivers excellent catalytic performance with a desirable NH3 yield rate (YR) up to 0.423mmolh-1 cm-2 (or 4.8mgh-1 mgcat -1 ) and a high NH3 Faradaic efficiency (FE) over 90% at a low overpotential of 0.69V (or 0VRHE ), where hydrogen evolution reaction (HER) is almost negligible. The electrolyzer toward NITRR and hydrazine oxidation (HzOR) is constructed for the first time with an electrode pair of Cu0.86 Ir0.14 Oz //Cu0.86 Ir0.14 Oz , yielding a high energy efficiency (EE) up to 87%. Density functional theory (DFT) calculations demonstrate that the dispersed Ir atom provides active site that not only promotes the NO3 - adsorption but also modulates the H adsorption/desorption to facilitate the proton supply for the hydrogenation of *N, hence boosting the NITRR. This work thus points to the importance of both morphological/structural and compositional engineering for achieving the highly efficient catalysts toward NITRR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call