Abstract

Hierarchical nanocomposite of ultrathin WS2 nanosheets uniformly attached on the surface of hollow nitrogen-doped carbon spheres (WS2@HNCSs) were successfully fabricated via a facile synthesis strategy. When evaluated as an anode material for LIBs, the hierarchical WS2@HNCSs exhibit a high specific capacity of 801.4 mA h g(-1) at 0.1 A g(-1), excellent rate capability (545.6 mA h g(-1) at a high current density of 2 A g(-1)), and great cycling stability with a capacity retention of 95.8% after 150 cycles at 0.5 A g(-1). The Li-ion storage properties of our WS2@HNCSs nanocomposite are much better than those of the previously most reported WS2-based anode materials. The impressive electrochemical performance is attributed to the robust nanostructure and the favorable synergistic effect between the ultrathin (3-5 layers) WS2 nanosheets and the highly conductive hollow N-doped carbon spheres. The hierarchical hybrid can simultaneously facilitate fast electron/ion transfer, effectively accommodate mechanical stress from cycling, restrain agglomeration, and enable full utilization of the active materials. These characteristics make WS2@HNCSs a promising anode material for high-performance LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.