Abstract

Exploring efficient and low-cost solid sorbents is essential for carbon capture and storage. Herein, a novel class of high-performance CO2 adsorbent (rGO@MgO/C) is engineered based on the controllable integration of reduced graphene oxide (rGO), amorphous carbon, and MgO nanocrystallites. The optimized rGO@MgO/C nanocomposite exhibits remarkable CO2 capture capacity (up to 31.5 wt % at 27 °C, 1 bar CO2, and 22.5 wt % under the simulated flue gas), fast sorption rate, and strong process durability. The enhanced capture capability of CO2 is the best among all of the MgO-based sorbents reported so far. The high performance of rGO@MgO/C nanocomposite can be ascribed to the hierarchical architecture and special physicochemical features, including the sheet-on-sheet sandwich-like structure, ultrathin nanosheets with abundant nanopores, large surface area, and highly dispersed ultrafine MgO nanocrystallites (ca. 3 nm in size), together with the rGO sheets and in situ generated amorphous carbon that serve as a dual carbon support and protectant system with which to prevent MgO nanocrystallites from agglomeration. In addition, the CO2-uptake capacity at intermediate temperature (e.g., 350 °C) can be further improved threefold through alkali metal salt promotion treatment. This work provides a facile and effective strategy with which to engineer advanced graphene-based functional nanocomposites with rationally designed compositions and architectures for potential applications in the field of gas storage and separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call