Abstract

Coarse-grained molecular dynamics (CG-MD) simulations were conducted to characterize the molecular structure and mechanical properties in the epoxy matrix around fibers in polymer matrix composites (PMCs). From these simulations, the molecular structure was quantified by measuring the free-volume hole radius distribution as a function of position from the matrix-fiber interface. Additionally, correlations between the epoxy mechanical properties and the average free-volume hole radius were established for different degrees of cross-linking. These results were then upscaled into a finite element model (FEM) of a PMC representative volume. The results from the CG-MD-informed FEM model were compared to conventional FEM simulations that assume uniform epoxy mechanical properties, and the results indicate that conventional FEM simulations overestimate the strength of PMCs and predict a symmetric damage evolution in the matrix. On the other hand, the CG-MD-informed FEM simulations predict a more realistic localization of damage around the fiber-matrix interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.