Abstract

In this paper, a novel hierarchical multi-class SVM (H-MSVM) with extreme learning machine (ELM) as kernel is proposed to classify electroencephalogram (EEG) signals for epileptic seizure detection. A clinical EEG benchmark dataset having five classes, obtained from Department of Epileptology, Medical Center, University of Bonn, Germany, is considered in this work for validating the clinical utilities. Wavelet transform-based features such as statistical values, largest Lyapunov exponent, and approximate entropy are extracted and considered as input to the classifier. In general, SVM provides better classification accuracy, but takes more time for classification and also there is scope for a new multi-classification scheme. In order to mitigate the problem of SVM, a novel multi-classification scheme based on hierarchical approach, with ELM kernel, is proposed. Experiments have been conducted using holdout and cross-validation methods on the entire dataset. Metrics namely classification accuracy, sensitivity, specificity, and execution time are computed to analyze the performance of the proposed work. The results show that the proposed H-MSVM with ELM kernel is efficient in terms of better classification accuracy at a lesser execution time when compared to ANN, various multi-class SVMs, and other research works which use the same clinical dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.