Abstract

This article presents a nearly optimal solution to the cooperative formation control problem for large-scale multiagent system (MAS). First, multigroup technique is widely used for the decomposition of the large-scale problem, but there is no consensus between different subgroups. Inspired by the hierarchical structure applied in the MAS, a hierarchical leader-following formation control structure with multigroup technique is constructed, where two layers and three types of agents are designed. Second, adaptive dynamic programming technique is conformed to the optimal formation control problem by the establishment of performance index function. Based on the traditional generalized policy iteration (PI) algorithm, the multistep generalized policy iteration (MsGPI) is developed with the modification of policy evaluation. The novel algorithm not only inherits the advantages of high convergence speed and low computational complexity in the generalized PI algorithm but also further accelerates the convergence speed and reduces run time. Besides, the stability analysis, convergence analysis, and optimality analysis are given for the proposed multistep PI algorithm. Afterward, a neural network-based actor-critic structure is built for approximating the iterative control policies and value functions. Finally, a large-scale formation control problem is provided to demonstrate the performance of our developed hierarchical leader-following formation control structure and MsGPI algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.