Abstract

Owing to the layered structure and high theoretical capacity, MoS2 has attracted more and more interest as a potential anode material for lithium-ion batteries. However, it suffers from rapid capacity decay and low rate capability. In this work, we introduce a novel hierarchical material consisting of ultrathin MoS2 nanosheets grown on the surface of an active carbon fiber (ACF) cloth fabricated by a facile morphogenetic process. The ACF cloth acts as both a template and a stabilizer. The obtained MoS2/ACF cloth composite possesses hierarchical porosity and an interconnected framework. Serving as a free-standing and binder-free anode, it shows high specific capacity and excellent reversibility. A discharge capacity as high as 971 mA h g(-1) is attained at a current density of 0.1 A g(-1), and the capacity fade is only 0.15% per cycle within 90 cycles. Even after 200 cycles at a high current density of 0.5 A g(-1), the composite still shows a capacity of 418 mA h g(-1). The superior electrochemical performance of MoS2/ACF can be attributed to its robust structure and to the synergistic effects of ultrathin MoS2 nanosheets and ACF. This single-component anode that we propose benefits from a simplified electrode preparation process. The morphogenetic strategy used for the material production is facile but effective, and can be extended to prepare other metal sulfides with elaborate textural characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call