Abstract

Developing a nanotheranostic with a high sensing performance and efficient therapy was significant in cancer diagnosis and treatment. Herein, a Au nanoparticle and hairpin-loaded photosensitive metal-organic framework (PMOF@AuNP/hairpin) nanotheranostic was constructed by growing AuNPs on PMOF in situ and then attaching hairpins. On the one hand, the PMOF@AuNP/hairpin nanotheranostic could effectively transfer O2 into ROS, facilitating efficient PDT. Additionally, the nanotheranostic possessed catalase-like activity, which could effectively catalyze H2O2 to generate O2, thus achieving O2-evolving PDT and significantly enhancing the antitumor effect of PDT in vivo. On the other hand, the nanotheranostic showed a high loading efficiency of hairpins and achieved the sensitive and selective detection of miR-21 both in living cells and in vivo. Moreover, the nanotheranostic could dynamically monitor the miR-21 level. Due to the excellent imaging performance, the nanotheranostic could recognize cancer cells and might provide important information on cancer progression for PDT. The developed PMOF@AuNP/hairpin nanotheranostic provided a useful tool for tumor diagnosis and antitumor therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call