Abstract

Probabilistic risk assessment is gaining acceptance as the most appropriate way to characterize and communicate uncertainties in estimates of human health risk and/or reference levels of exposure such as benchmark doses. Although probabilistic techniques are well established in the exposure-assessment component of the National Research Council’s risk-assessment paradigm, they are less well developed in the dose–response-assessment component. This paper proposes the use of hierarchical statistical models as tools for implementing probabilistic dose–response assessments, in that such models provide a natural connection between the pharmacokinetic (PK) and pharmacodynamic (PD) components of dose–response models. The results show that incorporating internal dose information into dose–response assessments via the coupling of PK and PD models in a hierarchical structure can reduce the uncertainty in the dose–response assessment of risk. However, information on the mean of the internal dose distribution is sufficient; having information on the variance of internal dose does not affect the uncertainty in the resulting estimates of excess risks or benchmark doses. In addition, the complexity of a PK model of internal dose does not affect how the variability in risk is measured via the ultimate endpoint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.