Abstract

Thoroughly equilibrated atomistic configurations of H-shaped polyethylene (PE) melts, obtained through a novel implementation of the double-bridging Monte Carlo algorithm [Karayiannis et al. J. Chem. Phys. 2003, 118, 2451], have been subjected to equilibrium NPT molecular dynamics (MD) simulations at T = 450 K and P = 1 atm, for times up to 4 μs. The simulated model H-shaped systems consist of PE chains possessing a main backbone (a “crossbar”) trapped between two branch points each of which is linked to two dangling arms. In our simulations, the average number of carbon atoms in the backbone ranged from 48 up to 300 corresponding to both unentangled and entangled crossbars, while the average arm length was kept relatively small (it ranged from 24 up to 50) corresponding always to unentangled arms. Our long MD simulation studies reveal the different relaxation mechanisms exhibited by an H-polymer: the rapid relaxation due to arm breathing (on the order of a few nanoseconds for the short, unentangled arms...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.