Abstract

In the context of cardiac muscle modeling, the availability of the myosin heads in the sarcomeres varies over the heart cycle contributing to the Frank–Starling mechanism at the organ level. In this paper, we propose a new approach that allows to extend the Huxley’57 muscle contraction model equations to incorporate this variation. This extension is built in a thermodynamically consistent manner, and we also propose adapted numerical methods that satisfy thermodynamical balances at the discrete level. Moreover, this whole approach—both for the model and the numerics—is devised within a hierarchical strategy enabling the coupling of the microscopic sarcomere-level equations with the macroscopic tissue-level description. As an important illustration, coupling our model with a previously proposed simplified heart model, we demonstrate the ability of the modeling and numerical framework to capture the essential features of the Frank–Starling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.