Abstract
This paper presents an overview of some hierarchical control schemes composed by a high level Model Predictive Control (MPC) and a low level Sliding Mode Control (SMC). The latter is realized by using the so-called Integral Sliding Mode (ISM) control approach and is meant to reject the matched disturbances affecting the plant, thus providing a system with reduced uncertainty for the MPC design. Both continuous and discrete-time solutions are discussed in the paper. Moreover, assuming the presence of a network in the control loop, a networked version of the control scheme is presented. It is a model-based event-triggered MPC/ISM control scheme aimed at minimizing the packets transmission. The input-to-state (practical) stability properties of the proposed approaches are also addressed in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.