Abstract

Large-scale wind power cluster with distributed wind farms has generated the active power dispatch and control problems in the power system. In this paper, a novel hierarchical model predictive control (HMPC) strategy based on dynamic active power dispatch is proposed to improve wind power schedule and increase wind power accommodation. The strategy consists of four layers with refined time scales, including intra-day dispatch, real-time dispatch, cluster optimization, and wind farm modulation layer. A dynamic grouping strategy is specifically developed to allocate the schedule for wind farms in cluster optimization layer. In order to maximize wind power output, downward spinning reserve and transmission pathway utilization are developed in wind farm modulation layer. Meanwhile, a stratification analysis approach for ultra-short-term wind power forecasting error is presented as feedback correction to increase forecasting accuracy. The proposed strategy is evaluated by a case study in the IEEE Network with wind power cluster integration. Results show that wind power accommodation has been enhanced by use of the proposed HMPC strategy, compared with the conventional dispatch and allocation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.