Abstract

A hierarchical random regression model (Hi-RRM) was extended into a genome-wide association analysis for longitudinal data, which significantly reduced the dimensionality of repeated measurements. The Hi-RRM first modeled the phenotypic trajectory of each individual using a RRM and then associated phenotypic regressions with genetic markers using a multivariate mixed model (mvLMM). By spectral decomposition of genomic relationship and regression covariance matrices, the mvLMM was transformed into a multiple linear regression, which improved computing efficiency while implementing mvLMM associations in efficient mixed-model association expedited (EMMAX). Compared with the existing RRM-based association analyses, the statistical utility of Hi-RRM was demonstrated by simulation experiments. The method proposed here was also applied to find the quantitative trait nucleotides controlling the growth pattern of egg weights in poultry data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call