Abstract

A straightforward one-pot approach for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes is presented. The procedure is based on the carbonization of an organic salt (i.e., sodium gluconate) at a temperature in the range of 700-900 °C. The carbon nanosheets have a large aspect ratio (length/thickness ≈ 10(2)-10(3)), a thickness within the range of 40-200 nm, high BET surface areas (SBET) of up to 1390 m(2) g(-1), and a porosity with a hierarchical organization in the micropore-mesopore range. Importantly, via an additional activation step, the textural properties can be substantially enhanced (SBET up to 1890 m(2) g(-1)). Both the nanosheet morphology (short diffusional paths) and the hierarchical microporous/mesoporous pore structure allow the rapid transport of ions throughout the carbonaceous matrix, leading to excellent electrochemical performance. Thus, the hierarchical nanosheets exhibit specific capacitances of up to 140 F g(-1) at an ultrahigh discharge current of 150 A g(-1) in 1 M H2SO4 and 100 F g(-1) at 120 A g(-1) in 1 M TEABF4/AN. The maximum specific power recorded in an aqueous electrolyte is ∼ 20-30 kW kg(-1) and ∼ 90-110 kW kg(-1) in an organic electrolyte. These promising power characteristics are accompanied by excellent cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.