Abstract

The advent of three-dimensional (3-D) printed technique provides great possibility in the fabrication of customized porous titanium (Ti) implant. However, the bioinert property of the printed Ti poses an outstanding problem. Hybrid micro-arc oxidation and hydrothermal (MAO–HT) treatment on porous metals is able to produce multi-scaled hierarchical orthopedic implant, showing great potential for surface modification of 3-D printed implant. In this study, cylindrical porous Ti6Al4V (Ti64) scaffolds with pore size of 640 µm, porosity of 73% were 3-D printed by electron beam melting process, and their surfaces were left untreated or treated by a combined MAO–HT procedure. In vitro bioactivity was tested by immersion in simulated body fluid for different time points. Then, 12 scaffolds in each group were implanted into the femoral condyles of New Zealand rabbit for 8 weeks. Osseointegration was evaluated by qualitative and quantitative histological analysis, and the bone ingrowth features were probed by sequential fluorescent labeling at 3 and 6 weeks post-surgery. Following the MAO–HT treatment, the porous Ti64 scaffold was endowed with multi-scaled micro/nano-topographies and high amounts of CaP on its surface. The treated scaffold exhibited drastically enhanced apatite forming ability compared with the untreated one. In vivo test revealed significantly that a higher amount of bone ingrowth and bone implant contact at the treated scaffold. The 2 types of scaffolds had different patterns of bone ingrowth: the treated scaffold exhibited a pattern of contact osteogenesis, by which bone formed directly on the treated implant surface, whereas bone formed distal to the implant surface of the untreated scaffold. MAO–HT treatment can significantly enhance the in vitro apatite-inducing ability and in vivo osseointegration capacity of 3-D porous Ti64 scaffold and may provide as a viable approach for the fabrication of bioactive 3-D printed porous implant for orthopedic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.