Abstract

Birnessite MnO2 is a promising cathode material for aqueous Mg-ion batteries due to its layered structure with large interlayer distance. However, the two-dimensional growth mode of birnessite induces nanosheet morphology with preferred growth of inactive (001) planes with sluggish ion transport kinetics. In this work, a high Mg content birnessite with hierarchical nanowall arrays morphology is prepared by in situ electro-conversion using spinel Mn3O4 nanowall arrays. The electro-conversion Mg-birnessite (ECMB) nanowall arrays are assembled by ultrasmall nanosheets with reduced (001) planes but increased active (010) planes, affording enriched open intercalation channels and shortened Mg2+ diffusion length. Consequently, the ECMB cathode exhibits a large specific reversible capacity of about 255.1 mAh g−1 at a current density of 200 mA g−1, and outstanding cycling stability with 73.6% capacity retention after 3000 cycles. Finally, a 2.2 V aqueous full cell is constructed by using ECMB as positive electrode and polyimide as negative electrode, which achieves a high energy density of 65.2 Wh kg−1 at a power density of 96 W kg−1. This work demonstrates effective crystal plane modulation for Mg-birnessite to achieve superior Mg2+ storage in aqueous batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.