Abstract

A hierarchically patterned metal/semiconductor (gold nanoparticles/ZnO nanowires) nanostructure with maximized photon trapping effects is fabricated via interference lithography (IL) for plasmon enhanced photo-electrochemical water splitting in the visible region of light. Compared with unpatterned (plain) gold nanoparticles-coated ZnO NWs (Au NPs/ZnO NWs), the hierarchically patterned Au NPs/ZnO NWs hybrid structures demonstrate higher and wider absorption bands of light leading to increased surface enhanced Raman scattering due to the light trapping effects achieved by the combination of two different nanostructure dimensions; furthermore, pronounced plasmonic enhancement of water splitting is verified in the hierarchically patterned Au NPs/ZnO NWs structures in the visible region. The excellent performance of the hierarchically patterned Au NPs/ZnO NWs indicates that the combination of pre-determined two different dimensions has great potential for application in solar energy conversion, light emitting diodes, as well as SERS substrates and photoelectrodes for water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call