Abstract

Mesoporous SnO microspheres were synthesised by a hydrothermal method using NaSO4 as the morphology directing agent. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) analyses showed that SnO microspheres consist of nanosheets with a thickness of about 20 nm. Each nanosheet contains a mesoporous structure with a pore size of approximately 5 nm. When applied as anode materials in Na-ion batteries, SnO microspheres exhibited high reversible sodium storage capacity, good cyclability and a satisfactory high rate performance. Through ex situ XRD analysis, it was found that Na(+) ions first insert themselves into SnO crystals, and then react with SnO to generate crystalline Sn, followed by Na-Sn alloying with the formation of crystalline NaSn2 phase. During the charge process, there are two slopes corresponding to the de-alloying of Na-Sn compounds and oxidisation of Sn, respectively. The high sodium storage capacity and good electrochemical performance could be ascribed to the unique hierarchical mesoporous architecture of SnO microspheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call