Abstract
A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot, two-step strategy allows rational control over the core/shell chemical composition, topology, and pore/particle size, simply by adjusting the reaction conditions in the presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent under basic conditions. The spherical, ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm3‾ n) depending on the organosilica precursor. The hexagonal MS shell was obtained by n-hexane-induced controlled hydrolysis of TEOS followed by directional co-assembly/condensation of silicate/CTAB composites at the PMO cores. The HSMSCSNs feature a hierarchical pore structure with pore diameters of about 2.7 and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the ranges of 90-275 and 15-50 nm, respectively, and the surface areas (max. 1300 m2 g-1 ) and pore volumes (max. 1.83 cm3 g-1 ) are among the highest reported for core-shell nanoparticles. The adsorption and controlled release of the fungicide propiconazole by the HSMSCSNs showed a three-stage release profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.