Abstract
Hierarchical porous materials are promising for catalyst, separation and sorption applications. A ligand-assisted etching process is developed for template-free synthesis of hierarchical mesoporous MOFs as single crystals and well-intergrown membranes at 40 °C. At 223 K, the hierarchical porous structures significantly improve the CO2 capture capacity of HKUST-1 by more than 44 % at pressures up to 20 kPa and 13 % at 100 kPa. Even at 323 K, the enhancement of CO2 uptake is above 25 % at pressures up to 20 kPa and 7 % at 100 kPa. The mesoporous structures not only enhance the CO2 uptake capacity but also improve the diffusion and mass transportation of CO2 . Similarly, well-intergrown mesoporous HKUST-1 membranes are synthesized, which hold the potential for film-like porous devices. Mesoporous MOF-5 crystals are also obtained by a similar ligand-assisted etching process. This may provide a facile way to prepare hierarchical porous MOF single crystals and membranes for wide-ranging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.