Abstract

Quantum dynamics (QD) simulation is a powerful tool for interpreting ultrafast spectroscopy experiments and unraveling their microscopic mechanism in out-of-equilibrium excited state behaviors in various chemical, biological, and material systems. Although state-of-the-art numerical QD approaches such as the time-dependent density matrix renormalization group (TD-DMRG) already greatly extended the solvable system size of general linearly coupled exciton-phonon models with up to a few hundred phonon modes, the accurate simulation of larger system sizes or strong system-environment interactions is still computationally highly challenging. Based on quantum information theory (QIT), in this work, we realize that only a small number of effective phonon modes couple to the excitonic system directly regardless of a large or even infinite number of modes in the condensed phase environment. On top of the identified small number of direct effective modes, we propose a hierarchical mapping (HM) approach through performing block Lanczos transformations on the remaining indirect modes, which transforms the Hamiltonian matrix to a nearly block-tridiagonal form and eliminates the long-range interactions. Numerical tests on model spin-boson systems and realistic singlet fission models in a rubrene crystal environment with up to 7000 modes and strong system-environment interactions indicate HM can reduce the system size by 1-2 orders of magnitude and accelerate the calculation by ∼80% without losing accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call