Abstract

Abstract Lithium ion batteries (LIBs) with enhanced performance to commercial ones are urgently demanded in portable electric devices. Herein, we demonstrate an efficient strategy to improve the electrochemical performance of a dominant commercial cathode material (LiCoO2) by constructing 3D hierarchical LiNixCoyO2 (h-LNCO). The h-LNCO presents porous spherical-shaped morphology at mesoscale while comprises interconnected primary nanoparticles at nanoscale. Such a unique morphology endows the h-LNCO with porous structure for easy penetration of electrolyte, relatively small size of primary particles with short Li+ ions diffusion length and abundant exposed surface in favor of Li+ intercalation/deintercalation. The synergism of these merits makes the h-LNCO exhibit superior electrochemical properties with high capacity, superior cyclability and rate capability, much better than the solid granular LNCO counterparts and commercial LiCoO2. This strategy of constructing porous hierarchical mesostructures could be extended to other electrode materials for electrochemical energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.