Abstract

Isoporous membranes with well-defined pore architectures offer a unique design approach to achieve a multi-scale porous network. For instance, isoporous membranes with progressively smaller pore sizes can be stacked to create a hierarchical pore network in which each length scale and the gradient of the pore network are deterministic by design. In this paper, we introduce a hierarchically-arranged multilayer isoporous air filter that comprises an ultrathin (thickness <1μm) nanoporous active filtration layer and a microporous support layer. To maximize airflow and thereby reduce pressure drop across the membrane, we engineered a gap between the nanoporous and microporous membranes by designing and fabricating microscale spacer structures akin to feed spacers used in spiral wound reverse osmosis membranes. We demonstrated that such hierarchical isoporous membranes with integrated spacers (HIM-S) can retain high filtration efficiency (>95%) for ultrafine, most penetrating particle size (MPPS) while simultaneously reducing the pressure drop across the membrane (by ∼86%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call