Abstract

Pore characterization in shales is challenging owing to the wide range of pore sizes and types present. Haynesville-Bossier shale (USA) was sampled as a typical clay-bearing siliceous, organic-rich, gas-mature shale and characterized over pore diameters ranging 2 nm to 3000 nm. Three advanced imaging techniques were utilized correlatively, including the application of Xe+ plasma focused ion beam scanning electron microscopy (plasma FIB or PFIB), complemented by the Ga+ FIB method which is now frequently used to characterise porosity and organic/inorganic phases, together with transmission electron microscope tomography of the nano-scale pores (voxel size 0.6 nm; resolution 1–2 nm). The three pore-size scales each contribute differently to the pore network. Those <10 nm (greatest number), 10 nm to 100 nm (best-connected hence controls transport properties), and >100 nm (greatest total volume hence determines fluid storativity). Four distinct pore types were found: intra-organic, organic-mineral interface, inter-mineral and intra-mineral pores were recognized, with characteristic geometries. The whole pore network comprises a globally-connected system between phyllosilicate mineral grains (diameter: 6–50 nm), and locally-clustered connected pores within porous organic matter (diameter: 200–800 nm). Integrated predictions of pore geometry, connectivity, and roles in controlling petrophysical properties were verified through experimental permeability measurements.

Highlights

  • Shales constitute two-thirds of the volume of sedimentary rocks yet are arguably the least well understood rock type of the sedimentary record[1]

  • This study aims to build an integrated geometric and network model of a representative shale sample based on pore occurrence using a principal component analysis (PCA) method to reconstruct the pore system, and to construct models incorporating properties of size, geometry and network connectivity

  • We explore the potential of Scanning (S)transmission electron microscope (TEM) tomography to provide nanometre resolution images for nano-pores and present the first-time application of Xe+ Plasma focused ion beam system (FIB) (PFIB) slice-and-view imaging in shale to provide volumes with a large field of view, further combining these with Ga+ FIB slice-and-view imaging to bridge the associated length scales

Read more

Summary

Introduction

Shales constitute two-thirds of the volume of sedimentary rocks yet are arguably the least well understood rock type of the sedimentary record[1]. High-resolution (nanometre to sub-nanometre) techniques are required to image nano-pores, whilst a large field of view (tens of microns) is needed to provide a representative imaging volume. This requires high-resolution electron microscopy (EM) such as scanning electron microscope (SEM) and transmission electron microscope (TEM) instead of X-ray tomography, as they are able to provide mineral and organic matter information which cannot be acquired using present X-ray tomography techniques, due to their lower contrast and resolution[20]. There is a need for a combination of electron microscopy techniques that span a wide range of scales to visualize the geometry and networking of all pore types

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.