Abstract
Metal-organic frameworks (MOFs) provide a tunable platform for hierarchically integrating multiple components to effect synergistic functions that cannot be achieved in solution. Here we report the encapsulation of a Ni-containing polyoxometalate (POM) [Ni4 (H2 O)2 (PW9 O34 )2 ](10-) (Ni4 P2 ) into two highly stable and porous phosphorescent MOFs. The proximity of Ni4 P2 to multiple photosensitizers in Ni4 P2 @MOF allows for facile multi-electron transfer to enable efficient visible-light-driven hydrogen evolution reaction (HER) with turnover numbers as high as 1476. Photophysical and electrochemical studies established the oxidative quenching of the excited photosensitizer by Ni4 P2 as the initiating step of HER and explained the drastic catalytic activity difference of the two POM@MOFs. Our work shows that POM@MOF assemblies not only provide a tunable platform for designing highly effective photocatalytic HER catalysts but also facilitate detailed mechanistic understanding of HER processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.