Abstract

Abstract Efficient electrocatalytic water splitting is one of the most effective ways to solve the global energy crisis. In this paper, we report on a novel self-assembled hierarchical structure of Co3O4/CoMoO4 grown in situ on a bare nickel foam. The unique, three-dimensional honeycomb-like Co3O4 pores were constructed from one-dimensional nanowires and coated on two-dimensional CoMoO4 nanosheets structures grown on nickel foam. The synthesis involved a step-wise solvothermal method followed by an annealing treatment. Benefiting from the synergistic effect of the hierarchical nanostructures, the materials had more reaction active sites and a smaller electron transfer impedance, and they exhibited excellent electrocatalytic performances for the HER and OER of 143 and 244 mV, respectively, at 10 mA cm−2 in an alkaline solution. Furthermore, the materials remained stable during the long electrolysis period, over 10 h, presenting promising application prospects in the field of electrocatalytic water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.