Abstract
Developing heterogeneous non-precious metal catalysts that can achieve high catalytic activity and good product selectivity at the same time is still a challenging and interesting work for the selective oxidation of styrene into valuable chemicals from environmental and industrial points of view. Herein, hierarchical hollow nickel silicate (Ni3Si2O5(OH)4) microflowers assembled from well-defined Ni3Si2O5(OH)4 nanosheets have been prepared by a facile one-pot hydrothermal method. The intriguing structure endows the hollow Ni3Si2O5(OH)4 microflowers a high surface area of 177.4 m2 g−1 and an average pore size of 3.9 nm. When employed as a catalyst for the selective oxidation of styrene in the presence of hydrogen peroxide as a ecological sustainable green oxidant, the Ni3Si2O5(OH)4 exhibits an attractive catalytic performance with a remarkably high styrene conversion of 99.3% and a high selectivity of 81.1% to benzaldehyde.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.