Abstract

The synthesis of nonprecious electrocatalysts for oxygen electrocatalysis is of considerable interest for the development of electrochemical energy devices. Herein, we demonstrate a facile approach for the synthesis of bamboo-like nitrogen-doped carbon nanotube-encapsulated Co0.25Ni0.75 alloy electrocatalyst (Co0.25Ni0.75@NCNT) and its bifunctional oxygen electrocatalytic performance toward oxygen reduction and oxygen evolution reactions. The Co0.25Ni0.75 alloy wrapped with NCNT is obtained by a one-step carbothermal reduction approach using dicyandiamide and NiCo-MOF precursors. Dicyandiamide acts as a nitrogen source, and the in situ generated Co0.25Ni0.75 alloy nanoparticles catalyze the growth of bamboo-like NCNTs. The hollow NiCo-MOF plays a sacrificial role in providing a suitable environment for the controlled growth of Co0.25Ni0.75 alloy and NCNT. Co0.25Ni0.75@NCNT efficiently catalyzes both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at a favorable overpotential. It shows a low potential gap (ΔE) of ∼0.8 V between the two reactions, and it qualifies for the development of air cathode in metal-air batteries. The enhanced bifunctional activity and excellent durability stem from the chemical composition and the synergistic effect between Co0.25Ni0.75 alloy and encapsulating NCNT. The original phase and morphology of the catalyst is preserved after an extensive durability test. Aqueous rechargeable Zn-air battery (ZAB) is fabricated using a Co0.25Ni0.75@NCNT-based air cathode. The battery has high open-circuit voltage (1.53 V) and a maximum peak power density of 167 mW cm-2 with only 1.6% loss in the voltaic efficiency after 36 h charge-discharge cycles. As a proof-of-concept demonstration, the as-fabricated ZAB is successfully used for the electrochemical water splitting in alkaline solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call