Abstract

Rational designs and syntheses for advanced structures are of immense importance to enhance adsorption performances toward a variety of materials. In this study, the synthesis of a novel hierarchical hollow manganese-magnesium-aluminum ternary metal oxide (MMA) via a green hydrothermal strategy coupled with a calcination process serves as a robust adsorbent for fluoride elimination. Combining the strong affinities Mn, Mg, and Al species have toward fluoride into a 3D-hierarchical hollow structure with an adequately accessible adsorption surface can remarkably boost the migration and diffusion of fluoride and provide more mass diffusion pathways for fluoride elimination. Remarkably, the adsorption process follows the pseudo-second-order model and the Langmuir isotherm model with a considerable performance of 63.05 mg/g. Moreover, the adsorbent retained outstanding selectivity and recyclability. Overall, the results from the universal characterization techniques and batch experiments validate that the potential adsorption mechanisms were electrostatic attraction and ion exchange, and complexation. As such, the present method expands the current adsorbent toolbox by providing a rational design and synthesis of a highly efficient adsorbent material for use in managing environmental pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.