Abstract
Liquid metal dealloying (LMD) has recently attracted significant attention. Because the LMD process enables the production of three-dimensional (3D) interconnected non-noble metallic materials. In addition, the metallic melt medium is useful for the development of heterostructure (HS) metal–metal composites. However, the solidified liquid metal phase (low melting point metals such as Mg, Bi, Sn, or Cu) has a much lower strength than the developed ligament phase (e.g., Fe, FeCr, Ti, etc.). In this study, the soft Mg phase was strengthened by adding alloying element of Ni. A eutectic composition of Mg–10 at.% Ni melt leads to the formation of fine eutectic structure of (Mg–Mg2Ni) within 3D interconnected morphology. This hierarchical heterostructured composite consisted of FeCr ligament and Mg–Mg2Ni lamellar, and a high yield strength of 280 MPa and a noticeable elongation (1.5%) were achieved. The complex 3D morphology of ligament and lamellar geometrically constraint each other, and it prevents the early fracture of brittle Mg–Mg2Ni lamellar phase. The alloy design for the LMD melt gives insights for hierarchical HS materials with outstanding mechanical properties for structural applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.