Abstract
A new nanostructured α-Fe2O3 photoelectrode synthesized through plasma-enhanced chemical vapor deposition (PE-CVD) is presented. The α-Fe2O3 films consist of nanoplatelets with (001) crystallographic planes strongly oriented perpendicular to the conductive glass surface. This hematite morphology was never obtained before and is strictly linked to the method being used for its production. Structural, electronic, and photocurrent measurements are employed to disclose the nanoscale features of the photoanodes and their relationships with the generated photocurrent. α-Fe2O3 films have a hierarchical morphology consisting of nanobranches (width ∼10 nm, length ∼50 nm) that self-organize in plume-like nanoplatelets (350-700 nm in length). The amount of precursor used in the PE-CVD process mainly affects the nanoplatelets dimension, the platelets density, the roughness, and the photoelectrochemical (PEC) activity. The highest photocurrent (j = 1.39 mA/cm(2) at 1.55 VRHE) is shown by the photoanodes with the best balance between the platelets density and roughness. The so obtained hematite hierarchical morphology assures good photocurrent performance and appears to be an ideal platform for the construction of customized multilayer architecture for PEC water splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.