Abstract

The environmental problems caused by mining are continuous and multifaceted, in order to help manage and plan restored mining areas, the bioavailability of metals is an effective tool for measuring the potential risks to human health. This study analyzes the geochemical fractions of eight metals (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) to compare their bioavailability and establishes a Hierarchical health risk (HHR) model to assess the human health risks of the mine area after restoration. The results indicated that children have the highest non-carcinogenic risks exposed through ingestion (HI-ingestion) due to their special behaviors; HI-dermal may be enriched in the body; and HI-inhalation is lowest, as it is related to soil particle size. Affected by local economic development, environmental climate, soil type, and mining, the carcinogenic risk of exposure through the skin (CR-dermal) for adults significantly exceeds the acceptable safety level (ASL). The spatial distribution shows that the harm of mining to human health is a continuous process. There was still a significant CR for adults after remediation, and the HI of tailings exposure was more serious. The Classification and Regression Tree (CART) model of metal bioavailability was developed by integrating the extrinsic and intrinsic factors of metals to explore the effects of different factors on metal bioavailability and predict. The results showed that the bioavailability of metals was a dynamic process that combined land use, the distance to traffic roads, physicochemical properties of soil, and geochemical fractions of metal, and that it affects human health both directly and indirectly. Due to the fragility and sensitivity of the ecosystem after the mining area is restored, it may face greater environmental health risks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.