Abstract

The organoarsenic compound roxarsone (ROX) is added to chicken feed to enhance nutritional value. Although organic arsenic is generally less harmful than inorganic arsenic, concerns have arisen about its potential to transform into inorganic forms when excreted in animal waste, raising environmental and human health concerns. The potential dangers of long-term ROX exposure require reliable methods for the detection of the target analyte. In the current study, fabricated nanoscale graphene oxide (GO)/stainless steel (SS) pyramidal structures film on nickel foam (NF) is used as an electrode in the electrochemical detection of ROX. The proposed sensor was shown to outperform existing devices in terms of electrochemical activity, resulting in a wider linear range of detection for ROX (0.05–83.15µM) and lower detection limit (LOD) (0.006µM). Further, real sample analysis on water and meat samples confirmed the feasibility of the proposed GO/SS/NF sensor for the real-time detection of ROX in real-world applications. This research provides evidence to support the development of heterojunctions to improve ion transport channels and surface-active sites to promote ion mobility to enhance electrochemical responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.