Abstract

Graphene oxide (GO) is one of the most popular materials for preparing aerogels as monolith electrodes for supercapacitors because of its promising mechanical property and relatively good conductivity after thermal reduction. However, low surface area and restacking of reduced graphene nanosheets still limit the performance of the supercapacitors based on GO-derived aerogels. In this work, graphene-coupled polyaniline (PANI) nanosheets (GO@PANI), which were synthesized through interfacial polymerization method, were used to co-assemble with GO towards hierarchical-graphene-coupled PANI aerogels by hydrothermal strategy. The resultant new hybrid aerogels exhibited a typical three-dimensional (3D) porous structure with rich graphene/PANI heterostructure and high specific surface area of up to 337 m2/g. As electrodes for symmetric and asymmetric all-solid-state supercapacitors, the aerogels delivered areal capacitances of up to 453 and 679 mF/cm2, respectively, which are superior to those of most GO- and/or PANI-derived aerogel-based supercapacitors. This excellent electrochemical performance can be attributed to the synergistic contribution of the local conductivity of graphene layers sandwiched between PANI layers and long-distance conductivity of 3D graphene frameworks. The developed hierarchical-assembly method can be widely used for fabricating two-dimensional sandwich-type material-based aerogels with versatile applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.