Abstract
Temporal knowledge graphs (TKGs) reasoning has attracted increasing research interest in recent years. However, most of the existing TKGs reasoning models aim to learn a dynamic entity representation by binding timestamps information with the entities, neglecting to learn adaptive entity representation that is valuable to the query from relevant historical facts. To this end, we propose a Hierarchical Graph Attention neTwork (HGAT) for the TKGs reasoning task. Specifically, we design a hierarchical neighbor encoder to model the time-oriented and task-oriented roles of the entities. The time-aware mechanism is developed in the first layer to differentiate the contributions of query-relevant historical facts at different timestamps to the query. The designed relation-aware attention is used in the second layer to discern the contributions of the structural neighbors of an entity. Through this hierarchical encoder, our model can absorb valuable knowledge effectively from the relevant historical facts, and thus learn more expressive adaptive entity representation for the query. Finally, we evaluate our model performance on four TKGs datasets and justify its superiority against vaerious state-of-the-art baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.