Abstract

Quantum dynamics with local interactions in lattice models display rich physics, but is notoriously hard to study. Dual-unitary circuits allow for exact answers to interesting physical questions in clean or disordered one- and higher-dimensional quantum systems. However, this family of models shows some non-universal features, like vanishing correlations inside the light-cone and instantaneous thermalization of local observables. In this work we propose a generalization of dual-unitary circuits where the exactly calculable spatial-temporal correlation functions display richer behavior, and have non-trivial thermalization of local observables. This is achieved by generalizing the single-gate condition to a hierarchy of multi-gate conditions, where the first level recovers dual-unitary models, and the second level exhibits these new interesting features. We also extend the discussion and provide exact solutions to correlators with few-site observables and discuss higher-orders, including the ones after a quantum quench. In addition, we provide exhaustive parametrizations for qubit cases, and propose a new family of models for local dimensions larger than two, which also provides a new family of dual-unitary models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call