Abstract
One of the issues of greatest interest in urban planning today concerns the evaluation of the most vulnerable urban areas in the presence of different types of climate hazards. In this research, a hierarchical fuzzy MCDA model is implemented on a GIS-based platform aimed at detecting the urban areas most at risk in the presence of heatwave and pluvial flooding scenarios. The proposed model aims to detect the urban areas most vulnerable to both the two climatic phenomena and the two types of hazards as independent events; it partitions the physical component of an urban settlement into two subsystems: buildings and open spaces, and it determines the criticality of a subzone of the urban area of study by evaluating the vulnerabilities of the two subsystems to the two phenomena. The use of a hierarchical fuzzy MCDA model facilitates the modeling of the two subsystems and the assessment of their vulnerability to the two phenomena, and it provides a computationally fast tool for detecting critical urban areas. The model was tested on a study area made up of the districts of the central-eastern area of the city of Naples (Italy); it was divided into subzones made up of individual census areas. The most critical areas are represented by the subzones with criticality values higher than a specific threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.